Fundamentals of Data Structures with C 129

{
if (expr(i] == '(')
Push(&s, 1i);
else if (expr[i] == ')')
{
j = Pop(&s);
if (3 !'= -1)
printf("%d %$d\n",j+1,i+1);
else
printf ("No match for right
parenthesis at: %$d\n", i+l);
}
}
while (!Empty(&s))
{
j = Pop(&s);
printf ("No match for left parenthesis
at: $d\n", j+1);
}

Whenever a left parenthesis is encountered in the input expression expr, push its
position (i) in the stack and whenever a right parenthesis is read, the matching left
parenthesis position is popped (j) and displayed. When you get an extra ‘)’, a pop is
initiated from an empty stack which returns -1, hence flag an error. Similarly, when
you get an extra left parenthesis ‘(’, it would have been stored in stack. The while loop
pops all extra left parentheses and flags the error “No match for left parenthesis”. A
sample run of the above function is shown below:

Example Run 1

Enter an expression
((a+b) *c)
2 6
1 9
Example Run 2

. Enter an expression
((a+b)
2 6
No match for left parenthesis at: 1

130 Chapter3 » Stacks

Example Run 3

Enter an expression

(a+b))

1 5 :

No match for right parenthesis at: 6

3.4.2 Evaluation of Postfix Expression

An expression in computer field is not a new concept; in fact, arithmetic expressions
are common in mathematics. Before we attempt to design an algorithm for the
evaluation of a postfix expression, it is necessary to understand the basic concepts and
examples of infix, postfix and prefix expressions.

Basic definitions and Examples - Infix Notation

The expression what we use in mathematics is called as the infix expression. Consider
the following simple arithmetic expression,

A+B

In this expression, operands of the operator + are A and B. When the operator is fixed
between the operands, then we say such an expression as infix expression. The infix
expressions may also contain parenthesis to show the order of evaluation - i.e.,
precedence. For example, in the below infix expression

A+B*C

B * C is evaluated first and then the result of this sub expression becomes the second
operand for + and of course the first operand is A. You can change this predefined
order of evaluation by enclosing the expression(s) within brackets.

(A+B)*C

Now, (A + B) is evaluated first and then the result is multiplied with C. We are
comfortable in writing infix expressions because of early knowledge of mathematics.
However, for compilers it is not an easy job to evaluate infix expressions with one
single left-to-right scan. To evaluate such expressions in one single scan is possible if it
is written in postfix notation.

Postfix Notation

When the operator is placed after the two operands, it is called as postfix expression or
suffix expression. This type of notation is known as Kukasiewicz notation (due to the
Polish logician Jan Kuksiewicz). The suffix expression is some times called as Reversg
Polish notation. Examples for postfix expression are given in Table 3.1.

Notice that suffix expressions do not have parentheses unlike infix expressions.
Postfix expressions have the precedence of operators being attached to the expressions
from left to right. Take for instance the (iii) expression, where AB+ is done first as
indicated in the infix notation (A + B). Then this result is used as the first operand for *.

Fundamentals of Data Structures with C 131

Table 3.1
Infix Postfix (reverse Polish)
(i) A+B AB+

g |A+B*C ABC*+
(i) |(A+B)*C |AB+C*

Prefix notation

If the operator precedes the tow operands, such an expression is called as prefix
notation or Polish notation. Consider the same infix expression A + B and its
equivalent prefix expression is + A B.

We will rewrite the expressions shown in Table 3.1 to show all three types of
notations and it appears in Table 3.2

Table 3.2
Infix Suffix Prefix
i) A+B AB+ +AB

(i) |A+B*C ABC*+ |+A*BC
(i) |{(A+B)*C |AB+C* |*+ABC

Converting infix to other notations

As evaluation of suffix expressions is easier and efficient than its equivalent
expressions, we shall study algorithms to convert from one notation to the other.

Example 1 Infix to Postfix

A+B*C

A+[BCY]

ABC*+ « Answer

In converting from infix to postfix, follow stepwise conversion. Considering the above
example, first convert B * C to B C *, because * has higher precedence than +. Then,
consider A + B C * whose final postfixis AB C * +.

Example 2

(A+B)*C
[AB+[*C
AB+CH* « Answer

Example 3

(A+B)*(C-D)$SE*F ; $ is used for power

[AB+]*[CD-|s[E]+[F]

132 Chapter3 »

[AB+[*|CD-ES$|*[F] :*left to right

|AB+CD-E$*|*[H]
AB+CD-E$*F* « Answer

Example 4 Infix to Prefix

Stacks

A+B*C

A+[BC]

+A*BC <« Answer

Example 5

A+B)y*C

+AB|xC

*+ABC ¢ Answer
Example 6

(A+B)*(C-D)$SE*F

[+ AB|*(-CD]|s[E]*[F]

[+ AB|+*[$-CDE]*[F]

[*+ AB$-CDE|*[F]

**+ AB$-CDEF « Answer
Example 7 Prefix to infix

+-ABC
+[A-B|C

(A-B)+C or A-B+C Answer

Example 8

++A-*$BCD/+EF*GHI
++A-*[BSC|D/[E+FI[G*H]1 «Step1
++A-|(BSC)*D|/(E+F)(G*H)I
++A-|(BSO*D|[E+F)/(G*H)I
++A[(B$O)*D)-(E+F)/(G*H)|I
+[A+(B$O)*D)- (E+F)/(G*H)|1

A+(B$SO)*D)-((E+F)/(G*H))+1 « Answer

Fundamentals of Data Structures with C 133

First look for an operator that is followed by two operands (A, B, C, ..., Z). Convert
them into infix form. In Step 1, you see three such sub expressions (B $ C), (E + F) and
(G * H). Continue this process until you process the leftmost operator. The grouping is
shown in boxes.

Example 9 Postfix to Infix

AB+C-
[A+B]c-

(A+B)-C or A+B-C « Answer

Converting postfix to infix is much easier than converting prefix to infix. The reason is
that the precedence of the operators is in the same order as it appears in the suffix
expression.

Example 10

AB-C+DEF-+$
[A-B]C+DEF-+$
[A-B)+C|DEF-+3
[(A-B)+C|D[E-B)|+$
|(A-B)+C|[D+E-B)|$
((A-B)+C)$ (D +(E-F)) « Answer

Now we are in a position to devise a method to evaluate a given postfix expression.

Problem statement for Postfix evaluation

The objective of this problem is to show how a stack is useful for the evaluation of a
postfix expression. Secondly, to develop an algorithm and C program to evaluate a
given postfix expression. We will assume the following points:
* The input is a valid postfix expression (string of digits and operators).
The expression contains only digits from 0, 1, 2, ...,9.
No blank space is allowed in between characters.
The allowed operators are +, -, *, / and $.
The final evaluated result is returned to the calling routine.
* Only binary operators are allowed.
For example, for the postfix expression 2 3 4 * +, we must get the result as 14.

_The method

It is easy to think that the property of stack (LIFO) can be used to evaluate a postfix
expression because the operator always succeeds the operands. Consider a simple
example — B C *, to know what operation to be performed on this expression you must

134

Chapter3 » Stacks

wait until * is read. Since only one scanning is allowed (from left to right), we are
forced to remember the operands B and C. To do so, B and C are pushed into a stack as
we scan from left to right. When * is read, the operands can be popped from stack and
evaluated.

This process is true even for a complicated expression, which contains a sub
expression, say A B C * + (A + B * C is its infix equivalent). The symbols A, B and C
are all stored in the stack in the same order as they appear, i.e., C will be at the top of
the stack. When * is scanned, the last inserted two operands are popped (LIFO) and
(B * C) is calculated and pushed back into stack. Now, top of the stack contains B * C
and the bottom most is the symbol A. When + is read, again the value of (B * C) and A
are popped and added and again pushed into stack. Since the end of string is reached,
the final result is obtained by one pop. The entire steps can now be summarized as,

Step 1: Initialize the Stack.
Step 2: Repeat thru Step 4 until end of string is reached.
Step 3: Get the symbol.
Step 4: If symbol is a digit
then Push it into stack
else ifitis an operator
then Pop twice and perform the required operation
Push the sub expression result
else error — invalid char
Step 5: Pop the final answer and return the result.
Step 6: End.

Implementation in C

The input postfix expression is stored in a character array (not an integer array!). The
character array is used because the expression normally contains digits and operators —
which is a character. To convert an ASCII digit to its numeric data (decimal), simply
adopt the below given logic.

‘5’-‘0’=53-48=5
Hence, any character, c, read will be first converted to its equivalent integer (or float)
by using the formula (float)c - ‘0’. Before we explain the designing of the

functions, it is appropriate to show with a diagram that our logic really works (shown in
Figure 3.6).

The function Eval()

The C code for evaluation of a suffix expression is shown in Program 3.5 - Eval().
The main for loop iterates by picking the first character pointed by pos and up to the
end of the string (\0*).

Fundamentals of Data Structures with C 135

Example
Infix expression: “I+4*5\0”
Postfix expression: “345* +\0”
Input symbol Stack contents Remarks
- Empty Stack -
3
Top— | 3 3 is a digit, hence push it.
4 Top—> | 4 4 is also pushed.
3
5 Top— | 5 5 is a digit, push it.
4
3
Operator, hence pop 5 and
* Top— | 20 4 and do 5 * 4 = 20 and
3 push it again.

Operator, hence pop 20
+ and 3 and do 20 + 3 = 23

Top— | 23 and push it again.

\0 Pop(23) and
return the result.

Fig. 3.6 Snapshot of evaluation of “34 5 * +”

Program 3.5
Suffix Evaluation

float Eval (char expr(])

{
int c,pos;
float opndl, opnd2,value;
struct stk opndstack;
opndstack.top = -1;

136

Chapter3 » Stacks

for (pos = 0; (c = exprlpos]) != '\0'; pos++)
if (isdigit(c))
/* returns nonzero value, if c¢c is 0 to 9 */

Push (&opndstack, (float) (c - '0'));
else
{

opnd2 = Pop(&opndstack) ;

opndl = Pop(&opndstack) ;

value = oper(c,opndl, opnd2) ;

Push (&opndstack, value) ;
}

return (Pop (&opndstack)) ;
} .

/* Returns float after appropriate operation */
float oper (char symb, float opl, float op2)

{
switch (symb)
{
case '+' : return(opl + op2);
case '-' : return(opl - op2);
case '*' : return(opl * op2);
case '/' : return(opl / op2);
case '$' : return(pow(opl, op2));
default : printf("$s","Error:Illegal
operator") ;
exit(1l);
}
}

If c is a digit (isdigit () finds this) it is pushed into stack after converting it into a
float number. Otherwise pop the operands and do the required operation by calling
oper () function. The final result is in stack and is returned to the caller by one pop
operation.

3.4.3 Infix to Suffix conversion

The need for converting an infix arithmetic expression to suffix is that a number of
compilers require such conversions for evaluation purpose. Section 3.4.2 demonstrated
how simple is to evaluate a suffix or reverse Polish notation in one scan. However, it is
too much to ask the users to write their expressions in suffix form. Generally, for a long
time we are used to infix form and a program can be designed for the conversion. This
is the exact objective of this section. For example, if we are given an infix expression

Fundamentals of Data Structures with C 137

(a + b) * c, then the expected result is a b + ¢ *. Similarly, a + b * ¢ should yield
a b ¢ * +. The assumptions that we considered for this problem are listed below:

* The infix expression contains only single character operands i.e., a, b, ..., z.
= The valid operators are +, -, *,/, $ or A
* The expression may or may not contain parentheses.

= The given infix expression is assumed to be valid.

The Method

The backbone of the algorithm is the precedence value assigned to various types of
symbols in the expression — operands, operators, left parenthesis, right parenthesis, etc.
The precedence of the symbols decides whether the symbol will go into the stack or be
padded with the output postfix string.

We must maintain two types of precedence for the symbols — the first is the
incoming symbol precedence and the other one is the stack precedence. An incoming
symbol with a precedence value greater than that of the top element of the stack will be
pushed into stack. Because, the higher precedence operators should appear first in the
suffix string compared to other operators on the stack. Table 3.3 shows the precedence
of various symbols. Notice that the precedence values are written in an ascending order,
assigning left parenthesis the highest.

Table 3.3
Symbol Incoming symbol Stack Precedence
Precedence (f) (g)

+, - 1 2
*,/ .3 4
$,7 6 5
a,b, ...,z 7 8
(9 0

) 0 -

Let us devise the method first for an unparenthesized expression and later introduce
how to handle parenthesized expression. The example infix expression is A + B * C. As
explained already, when the incoming symbol precedence is greater than the stack
precedence, it is pushed in the stack, otherwise pop the symbol and put it in the output.

When we scan the expression, the first symbol is A and this should be put in the
stack. For this to happen there should be already a symbol in the stack that has a lower
precedence. We shall assume that ‘(* is already pushed in the stack before the main loop
starts. Note that its stack precedence is assigned 0 for this purpose. Next symbol is +
and since its precedence is 1, symbol A is popped and put in the output string. No more
symbols will be popped as all the symbols have their precedence value greater than
g(‘(“). Note, that + is saved in stack (SUFFIX = “A”),

138 Chapter3 » Stacks

The symbol B is pushed into stack with the same arguments as before and when * is
read, B is popped and added to output string (SUFFIX = “A B”). The precedence of * is
greater than + and so it is kept in stack only.

When C is scanned, it is pushed in the stack. Now the current stack contents is
“(+* C” in which C is at the top of the stack. Now to force all the symbols to come of
the stack, we assume that every infix expression is attached with a ‘)’ and assign its
incoming symbol precedence (f) as 0. Since ‘)’ has this lowest precedence value, all
but ‘(‘ will be removed from stack. So, SUFFIX = “A B C * +” which is our expected
result.

Let us now consider few points related to parenthesized expressions. All the left
parentheses will be stored in stack. However, the right parenthesis will not be stored in
the stack (see its precedence value f(‘(‘) = 0). Because, when you encounter *)’, simply
pop the symbol until you get ‘(‘ and send it to SUFFIX. Note that the stack precedence
of ‘(* and incoming symbol precedence of ‘)’ is same (i.e., 0) to remove ‘(‘ from stack
and also not to add it into SUFFIX.

Combining all these points, we can write the algorithm for converting infix
expression to suffix expression and is shown in Algorithm 3.1

Algorithm 3.1 Infix to Postfix

Algorithm Infix-to-Postfix(infix, SUFFIX)

{
// infix - given infix expression - char string
// postr - suffix expression output - char string.
// s - stack
// top - pointer to top of stack
// £ and g are precedence functions
// Initialize_Stack

top = 0;
s[top] = *(';
cur = 0; // cursor to scan infix
while((symb = infix[cur]) != *\0’) do
{
while (f(symb) < g(s[top]))
{
c = pop(s);
Append ¢ to SUFFIX;
}
if (£(symb) != g(s[top]))
Push(s, symb);
else
Pop(s);
cur = cur + 1; // point to the next character

Fundamentals of Data Structures with C

139

Example1l Table3.4
Input infix expression: (A + B) * C
Input symbol Stack contents Output (postr) Remarks
1. - - Stack
Top— | (initialization
- (0 > g(0
Top— | (
2« a
- f(A) > g(0)
Top— | A
3 A (
(
A f(+) < g(A)
Top— | + Push +
4, + (
(
A f(B) > g(+)
Top— | B
+
5 B (
(
6.) AB+ f() < g(B)
Top— | (all symbols up to
(‘are popped
AB+ f(*) > ()
Top—> | *
7. * (
AB+ f(c) > f(*)
Top— | C
8 C *
L]
AB+CH* since f()) is less
9.) that C and *, both
are popped and
Empty Stack f0) = g(0 one
pop will clear the

stack

140 Chapter3)»

We shall trace Algorithm 3.1 with a sample expression and is shown in Table 3.4. As
per the algorithm, the stack initially contains ‘(‘ and the expression will be padded with

‘)’ as the last character.

Program 3.5.

The function Post£ix () is a C code written using Algorithm 3.1 and is shown in

Program 3.5

Infix to Postfix Conversion

void Postfix (char infix[], char postr(])

{

}

int cur, p, len;

int i = 0;

char symb;

struct stk s;

len = strlen(infix);
infix([len] = ')';
infix[++len] = '\0';
s.top = 0;
s.items[s.top] = '(';

for (cur = 0; (symb = infix[cur]) != '\0';
{
while (f(symb) < g(s.items[s.top]))
postr([i++] = PQp(&s);

if (f£(symb) != g(s.items[s.top]))
Push(&s, symb);
else
Pop (&s) ;
}
postr[i] = '\0';

int Isoperand (char symb)

{

}

if ((symb >= 'a') && (symb <= 'z'))
return(l);

else
return(0) ;

/* Returns the incoming symbol precedence */
int £ (char opl)

{

Cur++)

Fundamentals of Data Structures with C 141

if (Isoperand(opl))

opl = '#';

switch (opl)

{
case '+':
case '-': return(l);
case '*':
case '/': return(3);
case '$': return(6);
case '#': return(7);
case '(': return(9);
case ')': return(0);

default : printf("Error\n");
return (-1);

}

/* Returns the Stack precedence */
int g (char op2)

{
if (Isoperand(op2))
op2 = '#';
switch (op2)
{
case '+':
case '-': return(2);
case '*':
case '/': return(4);
case '$': return(5);
case '#': return(8);
case '(': return(0);
default : printf("Error\n");
return (-1);
}
}

3.4.4 Infix to Prefix conversion

LISP is a computer programming language, which uses prefix expression extensively.
The objective of this section is to design an algorithm and C code to convert a given
valid infix expression to prefix expression. The assumptions that has been specified in
Section 3.3.3 for infix to suffix holds good for this problem also. So, we do not repeat
them here.

142 Chapter3 »

The Method

The design is same as infix to suffix conversion, expect for the following changes:

(1) The input infix string is scanned from right to left.

(2) The precedence (stack and input symbol) table should be changed.
Since the input string is scanned from right to left, we may encounter *)’ first and hence
it is stored in the stack and when a matching ‘(‘ is encountered, symbols from stack are
popped as long as the precedence of the incoming symbol is less than the stack top

precedence.

Example 1 Table 3.5

Input infix string: A*B+C

Input symbol Stack contents Prefix string
Top— | %
C © Top—> | C -
%
+ Top— | + C
%
Top— | B
B + C
%
Top— | *
* + BC
%
Top—> | A
A * +*ABC
+
%

Fundamentals of Data Structures with C 143

The stack actually retains the operators and the main difference is that the symbols are
added to the prefix output string from right to left. Two examples are shown in Table
3.5 and 3.6 that show the use of stack for this problem.

Let us consider another example expression that has no parentheses.

Example 2 Table 3.6

Input infix expression: A+B*C

Input symbol Stack contents Prefix string
C ‘ -
Top— | %
* Top— | * C
%
Top— | B
B * C
%
+ Top— | + *BC
%
Top—> | A
A + +A*BC
%

The symbol ‘%’ is used to pop all the remaining elements from stack after the input
expression is scanned and hence its precedence should be set to the lowest compared to
all the other symbols (i.e., -1). The precedence table is shown in Table 3.7.

We will show (see Table 3.8) yet another example for conversion to show the
behavior of the algorithm when parentheses are used.

In_Prefix() function

The C function to accomplish the infix to prefix conversion is shown in Program 3.6.
The main for loop scans the infix expression from right most character using the index
variable pos = strlen(infix)-1. The loop terminates when it reaches the first

144 Chapter3 » Stacks

character at position, pos = 0. The cursor for the prefix (output) string is
initialized to the last position. If the infix string does not contain parenthesis, then the
prefix string also will have the same length, otherwise it will have few characters less,
because left and right parenthesis won’t appear in prefix string.

Table 3.7
Incoming symbol Stack
Symbol precedegncz (f) precedence (g) |
+, - 2 1
* ! 4 3
$, A 5 6
a,b,..z 7 8
(0 -
) 9 0
% - -1

When the incoming symbol precedence is greater than the precedence of the stack top,
the corresponding symbol is pushed in stack, else it is popped and added to prestr
(i.e., when they differ in precedence value).

Program 3.6
Infix to Prefix Conversion

void In_Prefix (char infix[], char prefix[])
{

int pos;

char prestr[MAX];

int outpos;

char symb;

int 1i;

struct stk s;

outpos = strlen(infix);

s.top = 0; e
s.items[s.top] = '%';

for (pos = strlen(infix) - 1; pos >= 0; pos--)
{

symb = infix[pos];

while (f(symb) < g(s.items[s.top]))
prestr[--outpos] = Pop(&s);

if (f(symb) != g(s.items[s.topl))
Push(&s, symb);

else

Fundamentals of Data Structures with C 145

Pop(&s) ;
}
while (s.items([s.top] != '%')
prestr[--outpos] = Pop(&s);

for (i = 0; outpos+l <= strlen(infix);)
prefix([i++] = prestrloutpos++];

prefix[i] = '\0';

Pop(&s); /* remove '%' */

The remaining characters are copied to prefix until the special character % is reached
in stack. This is done using a while loop. Since, prefix expressions are parentheses
free, after the conversion, it should be copied from prestr string to prefix string
starting from outpos (cursor for prestr). The following code does this:

for(i = 0; outpos + 1 <= strlen(infix);)
prefix[i++] = prestr[outpos++];

The reader is advised to carefully go through Table 3.8 to understand this concept.

Example 3 Table 3.8

Infix expression: (A+B)*C

Incoming symbol Stack contents prestr
Top— | %
C Top— | C -
%
* Top— | * C
%
) Top— |) C
*
%

146 Chapter3) Stacks

Top— | B
B) C
sk
%
Top—> | +
+) BC
*
%
Top—> | A
+
A) BC
*
%
(' +ABC
Top—> | * ‘)’ will go into
% prestr
while loop will remove * *+ABC

The length of the infix expression is 7, where as the prefix string is of length 5 (because
prefix is free from parentheses). The prefix string after the while loop is executed
would look like

5
prestr:[l]*|+|A]B|C|

Using the last for loop, as explained already, the characters from position 2 to 6 will
be copied to prefix from 0 to 4.

3.5 DOUBLE STACK - A SPECIAL STACK

The stacks that have been presented so far were all single stacks. It means that the
elements that are pushed go into one stack only. This section addresses a new kind of
stack, which is useful in compilers and it is called as a double stack.

In the array implementation of stack, we put an upper limit for the stack size, say
MAX = 80. This means that you can have at most 80 elements only. When only few

Fundamentals of Data Structures with C 147

elements are used, there is a vast wastage of memory. Pascal compiler, for instance,
uses a different approach to save this memory by using two stacks in a single array.
Instead of defining two separate stack variables, we can store these elements in a single
array and operate from either ends.

Look at Figure 3.7 that shows the double stack and top pointers — fop! and top2.

0 1 2 ... MAX-1
items(] [10 J20] J...] 99 |
T T
topl top2
Fig 3.7 A double stack

Stackl grows from left to right and Stack 2 grows from right to left. Since both the
stacks need last inserted item to be remembered (i.e., top most element), two pointers
topl and top2 are required. The ropl moves from 0 and fop2 from MAX — 1. Since, the
template of the single stack can not be used for this problem, we shall show the
modified one below:

struct double_stk

{
int items([MAX];
int topl;
int top2;

Y

typedef struct double_stk * Dstack;

The important constraint is that the elements of Stackl and Stack2 should not get
overlapped.

The function Push()

The function to accomplish a push operation to either Stackl or Stack2 is shown in
Program 3.7.

Program 3.7
Push for Double Stack

void Push (DStack ps, int x, int n)

{
if (Full(ps)) /* Check for stack status */
{
printf ("Error-overflow\n");
return;
}

switch(n)

{

148

Chapter3 » Stacks

case 1: ++(ps->topl);
ps->items[ps->topl]
break;

case 2: --(ps->top2);
ps->items [ps->top2]
break;

default:printf("Invalid DStack id\n");

x; /* stack 1 */

X; /* stack 2 */

You can notice that there is an additional parameter n in addition to the usual
parameters ps and x. The Push () functibn must know where x is to be inserted?

Therefore, when you call Push() you must supply the stack number also. For
example,

Push(&s, 10, 1); // insert 10 to stackl
Push(&s, 99, 2); // insert 99 to stack2

Normal stack increments top and then inserts element into stack. However, this cannot
be followed for Stack2. The pointer top2 should be decremented first and then
inserted. Therefore, top2 should be initialized to MAX.

That is, top2 = MAX;

Checking for stack overflow condition in the case of double stack is again different
from ordinary stack and is explained later in this section.

The function Pop()

The function Pop () is shown as a C code in Program 3.8 and is almost similar to
Pop () of single stack.

Program 3.7
Pop for Double Stack

int Pop (DStack ps, int n)
{
switch (n)
{
case 1: if (!Empty(ps, n))
return (ps->items[ps->topl--1]);
break;
case 2: if (!Empty(ps, n))
return (ps->items[ps->top2++]);
break;
default: printf("Invalid DStack id\n");

Fundamentals of Data Structures with C 149

return (-1);

You may very easily observe that there is again an extra parameter n to indicate the
stack number. If n = 1, the element will be popped from Stackl, else if n = 2, it will
be from Stack2. After popping from Stackl, topl is decremented (normal stack) but
popping from Stack2 leads to incrementing top2. Because Stack2 shrinks towards
MAX (or right side), we need to check for underflow error condition and is explained
later in this section.

The function Full()

When do we say that the double stack is full? The design approach is generic; it means
that we write a common Full () function applicable for both the stacks. If we keep on
inserting it would go only to Stackl and therefore topl may reach to MAX - 1 andis
full. The other possibility is that if we keep on inserting to Stack2, then top2 may
reach 0, and it is again full. The third case is interesting and is explained with the help
of Figure 3.8. Assume, MAX =4.

0 1 2 3
items[] [10] 20 [[|
T

topl top2
Fig. 3.8(a) After pushing 10 and 20

0 1 2 3
items{) [10] 20 | 88 | 99 |
T 1

topl top2
Fig. 3.8(b) After pushing 99 and 88

In Figure 3.8(b), the status of stack is full. That is, when topl = top2-1 the stack is

said to be full and returns 1, else return 0. The function Full () is shown in Program
3.9.

Program 3.9
Stack status - Full

int Full (DStack ps)
{ /* return 1 when full, else 0 */
if (ps->topl == MAX-1 || ps->top2 ==
|| ps->topl == ps->top2-1)
return 1;

150 Chapter3 » Stacks

else return 0;

The function Empty()

The design of Empty () requires little thinking and is not same as Full (). You may
wrongly write as,

/* Wrong code */

if((ps->top != -1) && (ps->top2 == MAX))
return 1;

else return 0;

The logical operator && is wrongly used, because the function will return true (1) only
when both the stacks are empty. However, we must also take care of the situation where
even if either Stack1 or Stack2 is empty, the error should be reported. This code cannot
do that. Even if you replace the logical operator && to ||, the problem is not solved. The
solution is to add a parameter n to check the empty status of a particular stack, say,

if (!Empty(ps, 1))

The correct C code is shown in Program 3.10.

Program 3.10
Stack status - Empty

int Empty (DStack ps, int n)
{ /* return 1 when empty, else 0 */
switch(n)
{
case 1: if (ps->topl == -1)
return 1; else return 0;
case 2: if (ps->top2 == MAX)
return 1; else return 0;

